Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/68736
Title: A columnar competitive model with simulated annealing for solving combinatorial optimization problems
Authors: Eu, J.T.
Huajin, T.
Kay, C.T. 
Keywords: Combinatorial optimization
Competitive learning
Simulated annealing
Traveling salesman problem
Issue Date: 2006
Source: Eu, J.T.,Huajin, T.,Kay, C.T. (2006). A columnar competitive model with simulated annealing for solving combinatorial optimization problems. IEEE International Conference on Neural Networks - Conference Proceedings : 3254-3259. ScholarBank@NUS Repository.
Abstract: One of the major drawbacks of the Hopfield network is that when it is applied to certain polytopes of combinatorial problems, such as the traveling salesman problem (TSP), the obtained solutions are often invalid, requiring numerous trial-and-error setting of the network parameters thus resulting in low-computation efficiency. With this in mind, this article presents a columnar competitive model (CCM) which incorporates a winner-takes-all (WTA) learning rule for solving the TSP. Theoretical analysis for the convergence of the CCM shows that the competitive computational neural network guarantees the convergence of the network to valid states and avoids the tedious procedure of determining the penalty parameters. In addition, its intrinsic competitive learning mechanism enables a fast and effective evolving of the network. Simulation results illustrate that the competitive model offers more and better valid solutions as compared to the original Hopfield network. © 2006 IEEE.
Source Title: IEEE International Conference on Neural Networks - Conference Proceedings
URI: http://scholarbank.nus.edu.sg/handle/10635/68736
ISBN: 0780394909
ISSN: 10987576
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

17
checked on Feb 16, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.