Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0064763
Title: Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow
Authors: Xu, X.
Efremov, A.K.
Li, A.
Lai, L.
Dao, M.
Lim, C.T. 
Cao, J.
Issue Date: 28-May-2013
Source: Xu, X., Efremov, A.K., Li, A., Lai, L., Dao, M., Lim, C.T., Cao, J. (2013-05-28). Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow. PLoS ONE 8 (5) : -. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0064763
Abstract: Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P.) species with the P.falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs) during infection. At the late stage of parasites' development, the parasites export proteins to the infected RBCs (iRBC) membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC's adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF), and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM). With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size. © 2013 Xu et al.
Source Title: PLoS ONE
URI: http://scholarbank.nus.edu.sg/handle/10635/67239
ISSN: 19326203
DOI: 10.1371/journal.pone.0064763
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2013-probing_cytoadherence_malaria_infected_red-pub.pdf1.01 MBAdobe PDF

OPEN

PublishedView/Download

SCOPUSTM   
Citations

14
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

12
checked on Nov 22, 2017

Page view(s)

42
checked on Dec 10, 2017

Download(s)

2
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.