Please use this identifier to cite or link to this item: https://doi.org/10.1177/0885328211402243
Title: Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications
Authors: Rath, S.N.
Arkudas, A.
Lam, C.X. 
Olkowski, R.
Polykandroitis, E.
Chróścicka, A.
Beier, J.P.
Horch, R.E.
Hutmacher, D.W.
Kneser, U.
Keywords: angiogenesis
Arterio-venous loop model
fibrin gel
hyaluronic acid
microvascular CT scanning
PLDLLA-TCP-PCL
Issue Date: Sep-2012
Source: Rath, S.N., Arkudas, A., Lam, C.X., Olkowski, R., Polykandroitis, E., Chróścicka, A., Beier, J.P., Horch, R.E., Hutmacher, D.W., Kneser, U. (2012-09). Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications. Journal of Biomaterials Applications 27 (3) : 277-289. ScholarBank@NUS Repository. https://doi.org/10.1177/0885328211402243
Abstract: Hyaluronic acid (HA) and fibrin glue (FG) are effective hydrogels for tissue engineering applications as they support tissue in-growth, retain growth factors, and release them slowly with time. The scaffolds, in combination with a hydrogel, effectuate a successful graft. However, the survival of a graft entirely depends upon a functional vascular supply. Therefore, hydrogels must support the in-growing vasculature. To study and compare the vascular patterns, HA and FG hydrogel-containing PLDLLA-TCP-PCL scaffolds were implanted in the groin of male Lewis rats and supplied with a micro-surgically prepared arterio-venous (A-V) loop. The rats were perfused with a vascular contrast media after 4 and 8 weeks and sacrificed for further analysis. The specimens were scanned with micro-CT to find the vascular growth patterns. Corrosion casting of blood vessels followed by SEM demonstrated a high vascular density near the parent blood vessels. Histologically, HA and FG implanted animal groups showed significant angiogenetic activity, especially within the pores of the scaffold. However, formation of new blood vessels was more conspicuously observed at 4 weeks in FG than HA implants. Furthermore, by 8 weeks, the number and pattern of blood vessels were comparable between them. At this time, HA was still present indicating its slow degradation. The finding was confirmed by histomorphometric analysis. This experimental study demonstrates that HA containing composite scaffold systems permit stabile in-growth of blood vessels due to sustained degradation over 8 weeks. HA is a potential matrix for a tissue engineered composite graft. © The Author(s) 2011.
Source Title: Journal of Biomaterials Applications
URI: http://scholarbank.nus.edu.sg/handle/10635/67002
ISSN: 08853282
DOI: 10.1177/0885328211402243
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

16
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

15
checked on Nov 20, 2017

Page view(s)

34
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.