Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.ocemod.2006.04.001
Title: Wave data assimilation using ensemble error covariances for operational wave forecast
Authors: Sannasiraj, S.A.
Babovic, V. 
Chan, E.S. 
Keywords: Data assimilation
Error correction
Gain matrix
Local model
Wave forecasting
Wave model
Issue Date: 2006
Source: Sannasiraj, S.A., Babovic, V., Chan, E.S. (2006). Wave data assimilation using ensemble error covariances for operational wave forecast. Ocean Modelling 14 (1-2) : 102-121. ScholarBank@NUS Repository. https://doi.org/10.1016/j.ocemod.2006.04.001
Abstract: Most of the present operational data assimilation techniques provide an improved estimate of the system state up to the current time level based on measurements. From a forecasting viewpoint, this corresponds to an updating of the initial conditions of a numerical model. The standard forecasting procedure is then to run the model into the future, driven by predicted boundary and forcing conditions. In the wind-wave modelling context, the impact of the initial wave conditions quickly disappears within 6-12 h. Thus, after a certain forecast horizon, the model predictions are no better than from an initially uncorrected model. This paper considers a novel approach to wave data assimilation and demonstrates that through the measurement forecast (made using so-called local models), the entire model domain can be corrected over extended forecast horizons (i.e., long after the updated initial conditions have lost their influence), thus offering significant improvements over the conventional methodology. The proposed data assimilation scheme can be executed in the post-processor and is operationally viable with the requirement of insignificant execution time. This scheme produces an efficiency of 30-60% in reducing root mean square error wave height over a forecast period up to 24 h. The application of this proposed data assimilation procedure is demonstrated through a real-world wave data assimilation case study in the South East Asian Seas. The distribution of error forecasts over the entire model domain was estimated using a steady gain matrix derived from the ensemble of spatial error covariances. The improvements in the prediction of wave characteristics are highlighted. © 2006 Elsevier Ltd. All rights reserved.
Source Title: Ocean Modelling
URI: http://scholarbank.nus.edu.sg/handle/10635/66400
ISSN: 14635003
DOI: 10.1016/j.ocemod.2006.04.001
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

12
checked on Feb 27, 2018

WEB OF SCIENCETM
Citations

12
checked on Feb 27, 2018

Page view(s)

44
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.