Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/65952
Title: Optimum vibrating shapes of beams and circular plates
Authors: Thambiratnam, D.P. 
Thevendran, V. 
Issue Date: 22-Feb-1988
Source: Thambiratnam, D.P.,Thevendran, V. (1988-02-22). Optimum vibrating shapes of beams and circular plates. Journal of Sound and Vibration 121 (1) : 13-23. ScholarBank@NUS Repository.
Abstract: Optimum vibrating shapes of beams and circular plates, having piecewise linear variation in thickness, are treated herein. The study is concerned with two problems pertaining to (i) the fundamental mode of lateral vibration of beams and (ii) the fundamental mode of axisymmetric vibration of circular plates. These are (a) to find the best shape of the structure which would provide the highest elevation of this fundamental frequency, keeping the volume constant, and (b) to find the minimum volume and shape of the structure for a given minimum allowable fundamental frequency. A numerical procedure incorporating the finite element method and an iterative optimization technique has been used. This has enabled various boundary conditions to be conveniently treated in the analysis. Results indicate that often a very large elevation (>100%%) in the fundamental frequency for volume constraint, and a considerable saving (>50%) in material for frequency constraint, are possible by merely altering the shape. Moreover, the number of slopes and the allowable minimum thickness influence the results. © 1988 Academic Press Limited.
Source Title: Journal of Sound and Vibration
URI: http://scholarbank.nus.edu.sg/handle/10635/65952
ISSN: 0022460X
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

14
checked on Dec 8, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.