Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jmps.2008.01.006
Title: Continuum modeling of a porous solid with pressure-sensitive dilatant matrix
Authors: Guo, T.F. 
Faleskog, J.
Shih, C.F. 
Keywords: Homogenization
Plastic dilatancy
Porous material
Pressure sensitivity
Voids and inclusions
Issue Date: Jun-2008
Source: Guo, T.F., Faleskog, J., Shih, C.F. (2008-06). Continuum modeling of a porous solid with pressure-sensitive dilatant matrix. Journal of the Mechanics and Physics of Solids 56 (6) : 2188-2212. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jmps.2008.01.006
Abstract: The pressure-sensitive plastic response of a material has been studied in terms of the intrinsic sensitivity of its yield stress to pressure and the presence and growth of cavities. This work focuses on the interplay between these two distinctly different mechanisms and the attendant material behavior. To this end, a constitutive model is proposed taking both mechanisms into account. Using Gurson's homogenization, an upper bound model is developed for a voided solid with a plastically dilatant matrix material. This model is built around a three-parameter axisymmetric velocity field for a unit sphere containing a spherical void. The void is also subjected to internal pressure; this can be relevant for polymeric adhesives permeated by moisture that vaporizes at elevated temperatures. The plastic response of the matrix material is described by Drucker-Prager's yield criterion and an associated flow rule. The resulting yield surface and porosity evolution law of the homogenized constitutive model are presented in parametric form. Using the solutions to special cases as building blocks, approximate models with explicit forms are proposed. The parametric form and an approximate explicit form are compared against full-field solutions obtained from finite element analysis. They are also studied for loading under generalized tension conditions. These computational simulations shed light on the interplay between the two mechanisms and its enhanced effect on yield strength and plastic flow. Among other things, the tensile yield strength of the porous solid is greatly reduced by the internal void pressure, particularly when a liquid/vapor phase is the source of the internal pressure. © 2008 Elsevier Ltd. All rights reserved.
Source Title: Journal of the Mechanics and Physics of Solids
URI: http://scholarbank.nus.edu.sg/handle/10635/64833
ISSN: 00225096
DOI: 10.1016/j.jmps.2008.01.006
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

74
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

63
checked on Nov 22, 2017

Page view(s)

43
checked on Dec 11, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.