Please use this identifier to cite or link to this item: https://doi.org/10.1186/1475-2859-11-27
Title: Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis
Authors: Balagurunathan, B.
Jonnalagadda, S.
Tan, L.
Srinivasan, R. 
Keywords: Anaerobic growth
Genome scale metabolic models
Metabolic flux analysis
Scheffersomyces stipitis
Xylose utilization
Issue Date: 23-Feb-2012
Source: Balagurunathan, B., Jonnalagadda, S., Tan, L., Srinivasan, R. (2012-02-23). Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microbial Cell Factories 11 : -. ScholarBank@NUS Repository. https://doi.org/10.1186/1475-2859-11-27
Abstract: Background: Fermentation of xylose, the major component in hemicellulose, is essential for economic conversion of lignocellulosic biomass to fuels and chemicals. The yeast Scheffersomyces stipitis (formerly known as Pichia stipitis) has the highest known native capacity for xylose fermentation and possesses several genes for lignocellulose bioconversion in its genome. Understanding the metabolism of this yeast at a global scale, by reconstructing the genome scale metabolic model, is essential for manipulating its metabolic capabilities and for successful transfer of its capabilities to other industrial microbes.Results: We present a genome-scale metabolic model for Scheffersomyces stipitis, a native xylose utilizing yeast. The model was reconstructed based on genome sequence annotation, detailed experimental investigation and known yeast physiology. Macromolecular composition of Scheffersomyces stipitis biomass was estimated experimentally and its ability to grow on different carbon, nitrogen, sulphur and phosphorus sources was determined by phenotype microarrays. The compartmentalized model, developed based on an iterative procedure, accounted for 814 genes, 1371 reactions, and 971 metabolites. In silico computed growth rates were compared with high-throughput phenotyping data and the model could predict the qualitative outcomes in 74% of substrates investigated. Model simulations were used to identify the biosynthetic requirements for anaerobic growth of Scheffersomyces stipitis on glucose and the results were validated with published literature. The bottlenecks in Scheffersomyces stipitis metabolic network for xylose uptake and nucleotide cofactor recycling were identified by in silico flux variability analysis. The scope of the model in enhancing the mechanistic understanding of microbial metabolism is demonstrated by identifying a mechanism for mitochondrial respiration and oxidative phosphorylation.Conclusion: The genome-scale metabolic model developed for Scheffersomyces stipitis successfully predicted substrate utilization and anaerobic growth requirements. Useful insights were drawn on xylose metabolism, cofactor recycling and mechanism of mitochondrial respiration from model simulations. These insights can be applied for efficient xylose utilization and cofactor recycling in other industrial microorganisms. The developed model forms a basis for rational analysis and design of Scheffersomyces stipitis metabolic network for the production of fuels and chemicals from lignocellulosic biomass. © 2012 Balagurunathan et al; BioMed Central Ltd.
Source Title: Microbial Cell Factories
URI: http://scholarbank.nus.edu.sg/handle/10635/64496
ISSN: 14752859
DOI: 10.1186/1475-2859-11-27
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

31
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

24
checked on Nov 22, 2017

Page view(s)

34
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.