Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jaerosci.2013.07.011
DC FieldValue
dc.titleHigh speed imaging with electrostatic charge monitoring to track powder deagglomeration upon impact
dc.contributor.authorKwek, J.W.
dc.contributor.authorHeng, D.
dc.contributor.authorLee, S.H.
dc.contributor.authorNg, W.K.
dc.contributor.authorChan, H.-K.
dc.contributor.authorAdi, S.
dc.contributor.authorHeng, J.
dc.contributor.authorTan, R.B.H.
dc.date.accessioned2014-06-17T07:42:18Z
dc.date.available2014-06-17T07:42:18Z
dc.date.issued2013-11
dc.identifier.citationKwek, J.W., Heng, D., Lee, S.H., Ng, W.K., Chan, H.-K., Adi, S., Heng, J., Tan, R.B.H. (2013-11). High speed imaging with electrostatic charge monitoring to track powder deagglomeration upon impact. Journal of Aerosol Science 65 : 77-87. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jaerosci.2013.07.011
dc.identifier.issn00218502
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/64019
dc.description.abstractA dry powder inhaler (DPI) is effective in treating respiratory diseases if it can deliver consistent and reliable drug dosage with each actuation. De-agglomeration and subsequent detachment of the drug from the carrier particles upon actuation depends on the interaction forces between particle and wall and particles themselves. The particle surface properties such as roughness and moisture sorption, in turn, determine the extent of the interactions. Via combining high speed imaging with non-intrusive electrostatic measurements in an impaction throat model, the contributions of the electrostatic forces arising from de-agglomeration and impaction behaviours of the rough and smooth particulates could be investigated at 60. L/min. Higher flowing charges with limited agglomerate fracture upon impaction were observed for the rough carrier particles while significant agglomerate breakup and 'plume-like' re-entrainment behaviour was noted for the smooth ones. Increased moisture sorption on the larger specific surface area of the rough particles could have facilitated the accumulation of surface charges while the higher dispersive surface energy could have increased the cohesiveness of the rough particles. The smooth particles easily broke up upon impaction. High speed imaging with electrostatic monitoring has proved to be useful in investigating the mechanisms of powder de-agglomeration upon impaction. © 2013 Elsevier Ltd.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.jaerosci.2013.07.011
dc.sourceScopus
dc.subjectDe-agglomeration
dc.subjectElectrostatic
dc.subjectHigh speed imaging
dc.subjectImpaction
dc.subjectInhaler
dc.subjectSurface roughness
dc.typeArticle
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1016/j.jaerosci.2013.07.011
dc.description.sourcetitleJournal of Aerosol Science
dc.description.volume65
dc.description.page77-87
dc.description.codenJALSB
dc.identifier.isiut000325674700009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.