Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.cej.2010.07.048
Title: Elimination of die swell and instability in hollow fiber spinning process of hyperbranched polyethersulfone (HPES) via novel spinneret designs and precise spinning conditions
Authors: Widjojo, N. 
Chung, T.-S. 
Arifin, D.Y. 
Weber, M.
Warzelhan, V.
Keywords: Die swell
Flow stability
Hyperbranched polyethersulfone
Linear polyethersulfone
Spinneret designs
Spinning parameters
Issue Date: Sep-2010
Source: Widjojo, N., Chung, T.-S., Arifin, D.Y., Weber, M., Warzelhan, V. (2010-09). Elimination of die swell and instability in hollow fiber spinning process of hyperbranched polyethersulfone (HPES) via novel spinneret designs and precise spinning conditions. Chemical Engineering Journal 163 (1-2) : 143-153. ScholarBank@NUS Repository. https://doi.org/10.1016/j.cej.2010.07.048
Abstract: This study has successfully demonstrated that a proper combination of novel spinneret designs and spinning parameters can effectively counteract the die swell as well as flow instability phenomena, i.e. extrudate distortion, in the hyperbranched polyethersulfone (HPES) hollow fiber spinning. Attempts are also made to unravel the die swell and flow behavior differences between HPES and linear polyethersulfone (LPES) membranes spun using various spinneret designs and spinning conditions. In terms of flow stability, it is revealed that short conical spinnerets with a flow angle of 60° as well as short round flow channel spinneret with a flow angle of 30°, can reduce or eliminate extrudate distortions. Apart from spinneret designs, this study also accentuates the importance of a proper choice of spinning conditions for each specific spinneret to achieve flow stability and reduce die swell, namely: (1) bore fluid composition; (2) dope flow rate; (3) spinning temperature; and (4) take-up speed. Experimental results concluded that a proper combination of spinneret design and these four spinning parameters is the key to stabilize the spinning process. It is found that a high take-up speed spinning and a high non-solvent concentration in the bore fluid can fully eliminate die swell and enhance flow stability in the HPES hollow fiber spinning using short and conical or round spinnerets. © 2010 Elsevier B.V.
Source Title: Chemical Engineering Journal
URI: http://scholarbank.nus.edu.sg/handle/10635/63820
ISSN: 13858947
DOI: 10.1016/j.cej.2010.07.048
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

11
checked on Dec 14, 2017

WEB OF SCIENCETM
Citations

10
checked on Nov 18, 2017

Page view(s)

34
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.