Please use this identifier to cite or link to this item: https://doi.org/10.1021/ma051354j
Title: Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes
Authors: Xiao, Y. 
Dai, Y.
Chung, T.-S. 
Guiver, M.D.
Issue Date: 29-Nov-2005
Citation: Xiao, Y., Dai, Y., Chung, T.-S., Guiver, M.D. (2005-11-29). Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes. Macromolecules 38 (24) : 10042-10049. ScholarBank@NUS Repository. https://doi.org/10.1021/ma051354j
Abstract: Bromination modification was initially carried out on Matrimid polyimide before undergoing carbonation to produce carbon membranes. Compared with unmodified Matrimid, brominated Matrimid shows lower chain flexibility, which is demonstrated by increased glass transition temperatures and molecular simulation results. Additionally, an increase in space between polymer chains was supported by fractional free volume (FFV) and d-spacing measurements. The improvement of chain rigidity of polyimide precursors serves to strengthen the membrane morphology during the production of carbon membranes. Thermal gravimetric analysis indicates that the thermal stability of polyimide decreases after bromination. The lower thermal stability and higher FFV value of brominated Matrimid result in higher gas permeability of carbon membranes pyrolyzed at a low pyrolysis temperature, while the selectivity remained competitive to those pyrolyzed from the original Matrimid precursor under the same conditions. However, the gas permeabilities of carbon membranes derived from modified Matrimid decrease significantly and become lower than those of carbon membranes from the original Matrimid, when the pyrolysis temperature is raised to 800°C. This is due to the formation of more graphitic-like structure in carbon membranes from brominated polyimide, observed by the wide-angle X-ray diffraction. Therefore, it is concluded that bromination of Matrimid polyimide has significantly affected the pyrolysis behavior and the structure of the resulting carbon membranes. At a low pyrolysis temperature, carbon membranes derived from brominated precursors show attractive and superior gas separation performance. © 2005 American Chemical Society.
Source Title: Macromolecules
URI: http://scholarbank.nus.edu.sg/handle/10635/63778
ISSN: 00249297
DOI: 10.1021/ma051354j
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

49
checked on Jul 16, 2018

WEB OF SCIENCETM
Citations

49
checked on May 23, 2018

Page view(s)

36
checked on Jun 29, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.