Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jconrel.2006.11.028
Title: Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells
Authors: Hu, Y.
Xie, J. 
Tong, Y.W. 
Wang, C.-H. 
Keywords: Block copolymer
HepG2 cell
Nanoparticles
Paclitaxel
PEG conformation
Issue Date: 12-Mar-2007
Source: Hu, Y., Xie, J., Tong, Y.W., Wang, C.-H. (2007-03-12). Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Journal of Controlled Release 118 (1) : 7-17. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jconrel.2006.11.028
Abstract: Core-shell nanoparticles were prepared from di-block copolymer of methoxy poly(ethylene glycol)-polycaprolactone (MePEG-PCL) and tri-block copolymer of polycaprolactone-poly(ethylene glycol)-polycaprolactone (PCL-PEG-PCL). The MePEG-PCL copolymers form nanoparticles with PEG "brush" on their surfaces and PCL-PEG-PCL copolymers form nanoparticles with a "mushroom-like" structure on their surfaces in aqueous solution. The morphology and size of nanoparticles were measured by field emission scanning electron microscopy (FESEM) and laser light scattering (LLS). All the nanoparticles are in spherical shape and the sizes are less than 200 nm. The sizes of the nanoparticles increases with increasing PCL segment length. The drug-loading content results showed that the optimal feeding ratio of paclitaxel to copolymer is dependent upon the copolymer composition and 5% is a suitable feeding ratio. The in vitro release behavior exhibits a sustained release manner and is affected by copolymer composition. Experimental results showed that cells would prefer to attach to more hydrophobic polymers. Comparing between MePEG-PCL and PCL-PEG-PCL of similar hydrophobicity, more HepG2 cells have attached to the MePEG-PCL copolymer films because a denser PEG layer was formed on the surfaces of PCL-PEG-PCL copolymers. In vitro cellular uptake experimental results indicated that HepG2 cells prefer smaller nanoparticles with the same PEG configuration on their surfaces. The cytotoxicity of paclitaxel-loaded nanoparticles seemed to increase with increasing drug loading of nanoparticles against HepG2 cells. © 2006 Elsevier B.V. All rights reserved.
Source Title: Journal of Controlled Release
URI: http://scholarbank.nus.edu.sg/handle/10635/63766
ISSN: 01683659
DOI: 10.1016/j.jconrel.2006.11.028
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

212
checked on Dec 14, 2017

WEB OF SCIENCETM
Citations

200
checked on Nov 18, 2017

Page view(s)

34
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.