Please use this identifier to cite or link to this item: https://doi.org/10.1002/bit.24445
Title: Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture
Authors: Selvarasu, S.
Ho, Y.S.
Chong, W.P.K.
Wong, N.S.C.
Yusufi, F.N.K.
Lee, Y.Y.
Yap, M.G.S. 
Lee, D.-Y. 
Keywords: CHO cells
Constraints-based flux analysis
Genome-scale metabolic model
Mammalian systems biotechnology
Metabolomics
Issue Date: Jun-2012
Source: Selvarasu, S., Ho, Y.S., Chong, W.P.K., Wong, N.S.C., Yusufi, F.N.K., Lee, Y.Y., Yap, M.G.S., Lee, D.-Y. (2012-06). Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnology and Bioengineering 109 (6) : 1415-1429. ScholarBank@NUS Repository. https://doi.org/10.1002/bit.24445
Abstract: The increasing demand for recombinant therapeutic proteins highlights the need to constantly improve the efficiency and yield of these biopharmaceutical products from mammalian cells, which is fully achievable only through proper understanding of cellular functioning. Towards this end, the current study exploited a combined metabolomics and in silico modeling approach to gain a deeper insight into the cellular mechanisms of Chinese hamster ovary (CHO) fed-batch cultures. Initially, extracellular and intracellular metabolite profiling analysis shortlisted key metabolites associated with cell growth limitation within the energy, glutathione, and glycerophospholipid pathways that have distinct changes at the exponential-stationary transition phase of the cultures. In addition, biomass compositional analysis newly revealed different amino acid content in the CHO cells from other mammalian cells, indicating the significance of accurate protein composition data in metabolite balancing across required nutrient assimilation, metabolic utilization, and cell growth. Subsequent in silico modeling of CHO cells characterized internal metabolic behaviors attaining physiological changes during growth and non-growth phases, thereby allowing us to explore relevant pathways to growth limitation and identify major growth-limiting factors including the oxidative stress and depletion of lipid metabolites. Such key information on growth-related mechanisms derived from the current approach can potentially guide the development of new strategies to enhance CHO culture performance. © 2012 Wiley Periodicals, Inc.
Source Title: Biotechnology and Bioengineering
URI: http://scholarbank.nus.edu.sg/handle/10635/63611
ISSN: 00063592
DOI: 10.1002/bit.24445
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

87
checked on Dec 14, 2017

WEB OF SCIENCETM
Citations

86
checked on Nov 21, 2017

Page view(s)

49
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.