Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jconrel.2009.04.013
Title: Chemotherapeutic drug transport to brain tumor
Authors: Arifin, D.Y. 
Lee, K.Y.T.
Wang, C.-H. 
Keywords: Chemotherapy
Computational fluid dynamics
Convection
Diffusion
Simulation
Issue Date: 4-Aug-2009
Source: Arifin, D.Y., Lee, K.Y.T., Wang, C.-H. (2009-08-04). Chemotherapeutic drug transport to brain tumor. Journal of Controlled Release 137 (3) : 203-210. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jconrel.2009.04.013
Abstract: Implantation of polymeric wafers to deliver a chemotherapeutic drug is the most popular strategy against a brain tumor, but the understanding on local drug transport to influence the treatment efficacy is often overlooked. In this work, we employ a computational fluid dynamics simulation to study the suitability of four chemotherapeutic agents from a transport perspective, which specifically are carmustine, paclitaxel, 5-fluorouracil (5-FU), and methotrexate (MTX). The study is based on the diffusion/reaction/convection model, in which Darcy's law is used to account the convective contribution of the interstitial fluid. A realistic three-dimensional (3D) tissue geometry is extracted from magnetic resonance images (MRI) of a brain tumor. Our analysis explains how the distribution of the drug in the brain tumor is sensitively coupled to its physico-chemical properties. For the postulated conditions, only paclitaxel exhibits minimal degradation within the cavity: its effective cavity concentration is at least two times higher than those of others. It also exhibits the best penetration of the remnant tumor, so that the tumor is exposed to higher effective concentration up to two orders of magnitude as compared to others. It is also found that tumor receives uneven distribution of drug concentration, in which, even paclitaxel fails to provide adequate penetration on that part of the cavity surface nearest to the ventricles. In addition, we consider antiangiogenic treatment, which has been postulated to be a way to avoid drug loss from the treatment region by convection. It is shown that convection is of only marginal importance and that renormalization has little effect. © 2009 Elsevier B.V. All rights reserved.
Source Title: Journal of Controlled Release
URI: http://scholarbank.nus.edu.sg/handle/10635/63588
ISSN: 01683659
DOI: 10.1016/j.jconrel.2009.04.013
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

29
checked on Dec 14, 2017

WEB OF SCIENCETM
Citations

28
checked on Nov 17, 2017

Page view(s)

30
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.