Please use this identifier to cite or link to this item: https://doi.org/10.1002/qre.607
Title: The effect of correlation on chain sampling plans
Authors: Gao, Y.
Tang, L.-C. 
Keywords: Acceptance sampling
Chain sampling plan
Correlated production
Markov chain
Issue Date: Feb-2005
Source: Gao, Y., Tang, L.-C. (2005-02). The effect of correlation on chain sampling plans. Quality and Reliability Engineering International 21 (1) : 51-61. ScholarBank@NUS Repository. https://doi.org/10.1002/qre.607
Abstract: The Dodge chain sampling plan (ChSP-1) and its extensions are very useful in situations where testing is either destructive or costly. Its underlying assumption is that all units to be inspected are from the same process and the quality characteristic of interest follows an identical independent distribution. Although this assumption makes the model relatively simple and easy to implement, it may not hold for today's manufacturing processes with high production volume, in which correlation exists between products within the same process. In this paper, we propose a Markov chain model for chain sampling plans to model the dependency (correlation) between testing units. To achieve this, we assume that product units within each sample follow a Markov chain model and assume that they are independent when they are from different lots. The resulting OC curves and AOQ curves show that the discriminating power of chain sampling plans improves when there is a negative correlation between product units and deteriorates when the correlation is positive. Copyright © 2004 John Wiley & Sons, Ltd.
Source Title: Quality and Reliability Engineering International
URI: http://scholarbank.nus.edu.sg/handle/10635/63360
ISSN: 07488017
DOI: 10.1002/qre.607
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

1
checked on Dec 14, 2017

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2017

Page view(s)

21
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.