Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.advengsoft.2005.10.003
Title: Solving the feeder bus network design problem by genetic algorithms and ant colony optimization
Authors: Kuan, S.N.
Ong, H.L. 
Ng, K.M. 
Keywords: Ant colony optimization
Feeder bus
Genetic algorithm
Metaheuristics
Issue Date: Jun-2006
Source: Kuan, S.N., Ong, H.L., Ng, K.M. (2006-06). Solving the feeder bus network design problem by genetic algorithms and ant colony optimization. Advances in Engineering Software 37 (6) : 351-359. ScholarBank@NUS Repository. https://doi.org/10.1016/j.advengsoft.2005.10.003
Abstract: This paper proposes the design and analysis of two metaheuristics, genetic algorithms and ant colony optimization, for solving the feeder bus network design problem. A study of how these proposed heuristics perform is carried out on several randomly generated test problems to evaluate their computational efficiency and the quality of solutions obtained by them. The results are also compared to those published in the literature. Computational experiments have shown that both heuristics are comparable to the state-of-the-art algorithms such as simulated annealing and tabu search. © 2005 Elsevier Ltd. All rights reserved.
Source Title: Advances in Engineering Software
URI: http://scholarbank.nus.edu.sg/handle/10635/63327
ISSN: 09659978
DOI: 10.1016/j.advengsoft.2005.10.003
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

57
checked on Dec 14, 2017

WEB OF SCIENCETM
Citations

45
checked on Nov 19, 2017

Page view(s)

28
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.