Please use this identifier to cite or link to this item:
Title: Pipelined recursive filter with minimum order augmentation
Authors: Lim, Y.C. 
Liu, Bede
Issue Date: Jul-1992
Source: Lim, Y.C., Liu, Bede (1992-07). Pipelined recursive filter with minimum order augmentation. IEEE Transactions on Signal Processing 40 (7) : 1643-1651. ScholarBank@NUS Repository.
Abstract: Pipelining is an efficient way for improving the average computation speed of an arithmetic processor. However, for an M-stage pipeline, the result of a given operation is available only M clock periods after initiating the computation. In a recursive filter, the computation of y(n) cannot be initiated before the computations of y(n - 1) through y(n - N) are completed. H. B. Voelcker and E. E. Hartquist (1970) and P. M. Kogge and H. S. Stone (1973) independently devised augmentation techniques for resolving the dependence problem in the computation of y(n). However, the augmentation required to ensure stability may be excessively high, resulting in a very complex numerator realization. A technique which results in a minimum order augmentation is presented here. The complexity of the resulting filter design is very much lower. Various pipelining architectures are presented. It is demonstrated by an example that when compared to the prototype filter, the augmented filter has a lower coefficient sensitivity and better roundoff noise performance.
Source Title: IEEE Transactions on Signal Processing
ISSN: 1053587X
DOI: 10.1109/78.143436
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Feb 27, 2018


checked on Feb 19, 2018

Page view(s)

checked on Mar 12, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.