Please use this identifier to cite or link to this item: https://doi.org/10.1243/0954408JPME92
Title: Thin-film thermoelectric cooler: Thermodynamic modelling and its temperature-entropy flux formulation
Authors: Chakraborty, A.
Saha, B.B.
Koyama, S.
Ng, K.C. 
Keywords: And phonons
Boltzmann transport
Collisions of electrons
Entropy generation
Holes
T-s diagrams
Thermodynamic modelling
Thin films thermoelectrics
Issue Date: Feb-2007
Source: Chakraborty, A., Saha, B.B., Koyama, S., Ng, K.C. (2007-02). Thin-film thermoelectric cooler: Thermodynamic modelling and its temperature-entropy flux formulation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 221 (1) : 33-46. ScholarBank@NUS Repository. https://doi.org/10.1243/0954408JPME92
Abstract: Thermodynamic performances of a thin-film thermoelectric cooler are analysed from the point of view of irreversible thermodynamics using the Boltzmann transport equation, which includes the collision effects as well as those accounted for by the Gibbs law. Using this methodology, the article presents unique conservation equations for electrons, holes, and phonons as well as their necessary expressions for entropy generation within the thin films. A temperature-entropy (T-s) diagram is plotted for describing the processes of a thin-film thermoelectric cooler. This diagram demarcates how the energy input to the thin films could be apportioned and utilize in overcoming the dissipative and finite heat transfer losses. The dissipative effects of electron-hole collisions at high current densities have been found to be significant, up to 25 per cent of the total power input in a current field exceeding 2 A within the thin films. © IMechE 2007.
Source Title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/61570
ISSN: 09544089
DOI: 10.1243/0954408JPME92
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

11
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

11
checked on Nov 23, 2017

Page view(s)

33
checked on Dec 18, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.