Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.3662096
Title: Surface chemical modification for exceptional wear life of MEMS materials
Authors: Singh, R.A. 
Satyanarayana, N. 
Sinha, S.K. 
Issue Date: 2011
Source: Singh, R.A., Satyanarayana, N., Sinha, S.K. (2011). Surface chemical modification for exceptional wear life of MEMS materials. AIP Advances 1 (4) : -. ScholarBank@NUS Repository. https://doi.org/10.1063/1.3662096
Abstract: Micro-Electro-Mechanical-Systems (MEMS) are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime) of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE) nanolubricant on (i) silicon coated with SU-8 thin films (500 nm) and (ii) MEMS process treated SU-8 thick films (50 μm). After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times). The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min), cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made. © Copyright 2011 Author(s).
Source Title: AIP Advances
URI: http://scholarbank.nus.edu.sg/handle/10635/61423
ISSN: 21583226
DOI: 10.1063/1.3662096
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

14
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

11
checked on Nov 17, 2017

Page view(s)

17
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.