Please use this identifier to cite or link to this item: https://doi.org/10.1115/1.2673567
Title: Study of the mechanism of groove wear of the diamond tool in nanoscale ductile mode cutting of monocrystalline silicon
Authors: Cai, M.B.
Li, X.P. 
Rahman, M. 
Keywords: Microgroove wear
Molecular dynamics
Nanogroove wear
Nanoscale ductile mode cutting
Silicon wafer
Issue Date: Apr-2007
Source: Cai, M.B., Li, X.P., Rahman, M. (2007-04). Study of the mechanism of groove wear of the diamond tool in nanoscale ductile mode cutting of monocrystalline silicon. Journal of Manufacturing Science and Engineering, Transactions of the ASME 129 (2) : 281-286. ScholarBank@NUS Repository. https://doi.org/10.1115/1.2673567
Abstract: In nanoscale ductile mode cutting of the monocrystalline silicon wafer, micro-, or nano-grooves on the diamond cutting tool flank face are often observed, which is beyond the understanding based on conventional cutting processes because the silicon workpiece material is monocrystalline and the hardness is lower than that of the diamond cutting tool at room temperature. In this study, the mechanism of the groove wear in nanoscale ductile mode cutting of monocrystalline silicon by diamond is investigated by molecular dynamics simulation of the cutting process. The results show that the temperature rise in the chip formation zone could soften the material at the flank face of the diamond cutting tool. Also, the high hydrostatic pressure in the chip formation region could result in the workpiece material phase transformation from monocrystalline to amorphous, in which the material interatomic bond length varies, yielding atom groups of much shorter bond lengths. Such atom groups could be many times harder than that of the original monocrystalline silicon and could act as "dynamic hard particles" in the material. Having the dynamic hard particles ploughing on the softened flank face of the diamond tool, the micro-/nanogrooves could be formed, yielding the micro-/nanogroove wear as observed. Copyright © 2007 by ASME.
Source Title: Journal of Manufacturing Science and Engineering, Transactions of the ASME
URI: http://scholarbank.nus.edu.sg/handle/10635/61404
ISSN: 10871357
DOI: 10.1115/1.2673567
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

27
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

21
checked on Nov 18, 2017

Page view(s)

54
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.