Please use this identifier to cite or link to this item:
Title: Spray evaporation of different liquids in a drying chamber - Effect on flow, heat and mass transfer performances
Authors: Huang, L.
Kumar, K.
Mujumdar, A.S. 
Keywords: Atomization
Computational fluid dynamics
Residence time
Spray drying
Turbulence model
Two phase flow
Issue Date: Dec-2004
Citation: Huang, L.,Kumar, K.,Mujumdar, A.S. (2004-12). Spray evaporation of different liquids in a drying chamber - Effect on flow, heat and mass transfer performances. Chinese Journal of Chemical Engineering 12 (6) : 737-743. ScholarBank@NUS Repository.
Abstract: Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applications, however, the liquid making up the solution or suspension may not be water. The objective of this work is to examine the differences in flow patterns, thermal behavior and drying rates caused by different liquids having different thermo-physical properties spray into a spray dryer using a computational fluid dynamic model. Numerical experiments were carried out for water (base case), ethyl alcohol and isopropyl alcohol - the latter two as model non-aqueous liquids. The chamber geometry was cylinder type with a co-current axial pressure nozzle and also an axial central exit so that the configuration is two dimensional and axi-symmetric. It is shown that the liquid properties can have major influence on the thermal field, droplet trajectories, residence times and overall evaporation capacity when all parameters of the problem are held fixed. Deviations from the single phase turbulent airflow in the same chamber without spray are different for the three liquids examined.
Source Title: Chinese Journal of Chemical Engineering
ISSN: 10049541
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Feb 9, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.