Please use this identifier to cite or link to this item: https://doi.org/10.1122/1.4815979
Title: Short-term and long-term irreversibility in particle suspensions undergoing small and large amplitude oscillatory stress
Authors: Lin, Y.
Phan-Thien, N. 
Khoo, B.C. 
Keywords: Large amplitude oscillatory shear
Shear-induced diffusion
Suspension
Issue Date: Sep-2013
Source: Lin, Y., Phan-Thien, N., Khoo, B.C. (2013-09). Short-term and long-term irreversibility in particle suspensions undergoing small and large amplitude oscillatory stress. Journal of Rheology 57 (5) : 1325-1346. ScholarBank@NUS Repository. https://doi.org/10.1122/1.4815979
Abstract: The short-term and long-term irreversible behaviors of suspensions of rigid particles in oscillatory shear flow are studied by measuring the evolution of complex viscosity in time and applying of nonlinear analysis of the responded strain signal under the controlled-stress mode, and complemented by optical measurements on the particle motion. The short-term transition time for the system to reach a quasisteady state is an approximately bell-shaped function of the amplitude of the strain response, thus showing a critical strain amplitude accounting for the peak transition time. The short-term behavior is caused by the particle self-organization due to collisions between particles. At longer time scales, the complex viscosity of the suspension increases when probed by forces that elicit small strain amplitudes and decreases when stresses that result in large strain amplitudes are applied. It is proposed that the long-term behavior for stresses eliciting small strain amplitude is induced by the shear-induced diffusion of particles which self-organize into a crystal-like microstructure that can be easily annulled in oscillatory flow with large strain amplitude, while for stresses causing large strain amplitude the dominant microstructure is formed immediately via the oscillation. © 2013 The Society of Rheology.
Source Title: Journal of Rheology
URI: http://scholarbank.nus.edu.sg/handle/10635/61284
ISSN: 01486055
DOI: 10.1122/1.4815979
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

10
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

10
checked on Nov 23, 2017

Page view(s)

35
checked on Dec 11, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.