Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/61258
Title: Saliency analysis of support vector machines for feature selection
Authors: Tay, F.E.H. 
Cao, L.J.
Keywords: Feature selection
Saliency analysis
Structural risk minimization principle
Support vector machines
Issue Date: 2001
Source: Tay, F.E.H.,Cao, L.J. (2001). Saliency analysis of support vector machines for feature selection. Neural Network World 11 (2) : 153-166. ScholarBank@NUS Repository.
Abstract: This paper deals with the application of saliency analysis to Support Vector Machines (SVMs) for feature selection. The importance of feature is ranked by evaluating the sensitivity of the network output to the feature input in terms of the partial derivative. A systematic approach to remove irrelevant features based on the sensitivity is developed. Two simulated non-linear time series and rive real financial time series are examined in the experiment. Based on the simulation results, it is shown that that saliency analysis is effective in SVMs for identifying important features.
Source Title: Neural Network World
URI: http://scholarbank.nus.edu.sg/handle/10635/61258
ISSN: 12100552
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

22
checked on Dec 8, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.