Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.applthermaleng.2012.09.028
Title: Realistic minimum desorption temperatures and compressor sizing for activated carbon + HFC 134a adsorption coolers
Authors: Srinivasan, K.
Dutta, P.
Saha, B.B.
Ng, K.C. 
Prasad, M.
Keywords: Activated carbon
Adsorption system
Compression
Efficiency
R134a
Issue Date: 2013
Source: Srinivasan, K., Dutta, P., Saha, B.B., Ng, K.C., Prasad, M. (2013). Realistic minimum desorption temperatures and compressor sizing for activated carbon + HFC 134a adsorption coolers. Applied Thermal Engineering 51 (1-2) : 551-559. ScholarBank@NUS Repository. https://doi.org/10.1016/j.applthermaleng.2012.09.028
Abstract: A low thermal diffusivity of adsorption beds induces a large thermal gradient across cylindrical adsorbers used in adsorption cooling cycles. This reduces the concentration difference across which a thermal compressor operates. Slow adsorption kinetics in conjunction with the void volume effect further diminishes throughputs from those adsorption thermal compressors. The problem can be partially alleviated by increasing the desorption temperatures. The theme of this paper is the determination the minimum desorption temperature required for a given set of evaporating/condensing temperatures for an activated carbon + HFC 134a adsorption cooler. The calculation scheme is validated from experimental data. Results from a parametric analysis covering a range of evaporating/condensing/desorption temperatures are presented. It is found that the overall uptake efficiency and Carnot COP characterize these bounds. A design methodology for adsorber sizing is evolved. © 2012 Elsevier Ltd. All rights reserved.
Source Title: Applied Thermal Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/61202
ISSN: 13594311
DOI: 10.1016/j.applthermaleng.2012.09.028
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

3
checked on Nov 22, 2017

Page view(s)

25
checked on Dec 18, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.