Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.matcom.2008.05.005
Title: Numerical simulation of Richtmyer-Meshkov instability driven by imploding shocks
Authors: Zheng, J.G. 
Lee, T.S. 
Winoto, S.H. 
Keywords: Imploding shock
Piecewise parabolic method
Richtmyer-Meshkov instability
Issue Date: 1-Dec-2008
Source: Zheng, J.G., Lee, T.S., Winoto, S.H. (2008-12-01). Numerical simulation of Richtmyer-Meshkov instability driven by imploding shocks. Mathematics and Computers in Simulation 79 (3) : 749-762. ScholarBank@NUS Repository. https://doi.org/10.1016/j.matcom.2008.05.005
Abstract: In this paper, the classical piecewise parabolic method (PPM) is generalized to compressible two-fluid flows, and is applied to simulate Richtmyer-Meshkov instability (RMI) induced by imploding shocks. We use the compressible Euler equations together with an advection equation for volume fraction of one fluid component as model system, which is valid for both pure fluid and two-component mixture. The Lagrangian-remapping version of PPM is employed to solve the governing equations with dimensional-splitting technique incorporated for multi-dimensional implementation, and the scheme proves to be non-oscillatory near material interfaces. We simulate RMI driven by imploding shocks, examining cases of single-mode and random-mode perturbations on the interfaces and comparing results of this instability in planar and cylindrical geometries. Effects of perturbation amplitude and shock strength are also studied. © 2008 IMACS.
Source Title: Mathematics and Computers in Simulation
URI: http://scholarbank.nus.edu.sg/handle/10635/60953
ISSN: 03784754
DOI: 10.1016/j.matcom.2008.05.005
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

8
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

6
checked on Nov 28, 2017

Page view(s)

26
checked on Dec 18, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.