Please use this identifier to cite or link to this item: https://doi.org/10.1007/BF01182166
Title: Inversion of loading time history using displacement response of composite laminates: Three-dimensional cases
Authors: Liu, G.R. 
Ma, W.B.
Han, X. 
Issue Date: 2002
Source: Liu, G.R., Ma, W.B., Han, X. (2002). Inversion of loading time history using displacement response of composite laminates: Three-dimensional cases. Acta Mechanica 157 (1-4) : 223-234. ScholarBank@NUS Repository. https://doi.org/10.1007/BF01182166
Abstract: An inverse procedure is proposed to reconstruct the time history of transient loads on the surface of composite laminates from the knowledge of dynamic displacement response at only one receiving point. A hybrid numerical method (HNM) is adopted as the forward solver to compute the dynamic displacement response of composite laminates subjected to arbitrary loads. By introducing a kernel displacement function - the dynamic displacement response of composite laminates excited by a point step-impact load and the displacement response subjected to a load with an arbitrary force function are expressed in a form of convolution integral. The force history is reconstructed by employing an inversion algorithm, in which the least-squares optimization method being adopted to deconvolute the integral. Both point loads and loads with small spatial distribution are investigated and numerical verifications are given. The robustness of the procedure in the presence of noise is also investigated. Good agreements between the identified and true functions for all cases demonstrate the effectiveness of the present inverse procedure. The present inverse procedure is useful for determining impact loads on material surface using response on a point remote to the impact point.
Source Title: Acta Mechanica
URI: http://scholarbank.nus.edu.sg/handle/10635/60595
ISSN: 00015970
DOI: 10.1007/BF01182166
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

6
checked on Dec 5, 2017

WEB OF SCIENCETM
Citations

7
checked on Dec 5, 2017

Page view(s)

16
checked on Dec 11, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.