Please use this identifier to cite or link to this item:
Title: Air entrapment under an impacting drop
Authors: Thoroddsen, S.T. 
Etoh, T.G.
Takehara, K.
Issue Date: 10-Mar-2003
Citation: Thoroddsen, S.T., Etoh, T.G., Takehara, K. (2003-03-10). Air entrapment under an impacting drop. Journal of Fluid Mechanics (478) : 125-134. ScholarBank@NUS Repository.
Abstract: When a drop impacts on a liquid surface it entraps a small amount of air under its centre as the two liquid surfaces meet. The contact occurs along a ring enclosing a thin disk of air. We use the next-generation ultra-high-speed video camera, capable of 1 million f.p s (Etoh et al 2002), to study the dynamics of this air sheet as it contracts due to surface tension, to form a bubble or, more frequently, splits into two bubbles. During the contraction of the air disk an azimuthal undulation, resembling a pearl necklace, develops along its edge. The contraction speed of the sheet is accurately described by a balance between inertia and surface tension. The average initial thickness of the air sheet decreases with higher impact Reynolds numbers, becoming less than one micron. The total volume of air entrapped depends strongly on the bottom curvature of the drop at impact. A sheet of micro-bubbles is often observed along the original interface. Oguz-Prosperetti bubble rings are also observed. For low Weber numbers (We < 20) a variety of other entrapment phenomena appear.
Source Title: Journal of Fluid Mechanics
ISSN: 00221120
DOI: 10.1017/S0022112002003427
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Oct 15, 2018


checked on Oct 15, 2018

Page view(s)

checked on Oct 20, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.