Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jbiomech.2008.08.009
Title: A wearable system for pre-impact fall detection
Authors: Nyan, M.N. 
Tay, F.E.H. 
Murugasu, E.
Keywords: Accelerometer
Body area network
Elderly
Faint fall
Fall detection
Gyroscope
Pre-impact
Syncope
Issue Date: 5-Dec-2008
Source: Nyan, M.N., Tay, F.E.H., Murugasu, E. (2008-12-05). A wearable system for pre-impact fall detection. Journal of Biomechanics 41 (16) : 3475-3481. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jbiomech.2008.08.009
Abstract: Unique features of body segment kinematics in falls and activities of daily living (ADL) are applied to make automatic detection of a fall in its descending phase, prior to impact, possible. Fall-related injuries can thus be prevented or reduced by deploying fall impact reduction systems, such as an inflatable airbag for hip protection, before the impact. In this application, the authors propose the following hypothesis: "Thigh segments normally do not exceed a certain threshold angle to the side and forward directions in ADL, whereas this abnormal behavior occurs during a fall activity". Torso and thigh wearable inertial sensors (3D accelerometer and 2D gyroscope) are used and the whole system is based on a body area network (BAN) for the comfort of the wearer during a long term application. The hypothesis was validated in an experiment with 21 young healthy volunteers performing both normal ADL and fall activities. Results show that falls could be detected with an average lead-time of 700 ms before the impact occurs, with no false alarms (100% specificity), a sensitivity of 95.2%. This is the longest lead-time achieved so far in pre-impact fall detection. © 2008.
Source Title: Journal of Biomechanics
URI: http://scholarbank.nus.edu.sg/handle/10635/59341
ISSN: 00219290
DOI: 10.1016/j.jbiomech.2008.08.009
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

111
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

85
checked on Nov 21, 2017

Page view(s)

50
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.