Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.engstruct.2013.03.002
Title: Reducing hydroelastic response of pontoon-type very large floating structures using flexible connector and gill cells
Authors: Gao, R.P.
Wang, C.M. 
Koh, C.G. 
Keywords: Flexible connector
Genetic algorithm
Gill cell
Hydroelasticity
Very large floating structure
Issue Date: Jul-2013
Source: Gao, R.P., Wang, C.M., Koh, C.G. (2013-07). Reducing hydroelastic response of pontoon-type very large floating structures using flexible connector and gill cells. Engineering Structures 52 : 372-383. ScholarBank@NUS Repository. https://doi.org/10.1016/j.engstruct.2013.03.002
Abstract: This paper presents the use of flexible connector and "gill cells" to mitigate the hydroelastic response of pontoon-type, very large floating structure (VLFS) under wave action. Gill cells are compartments in VLFS with holes or slits at their bottom surfaces to allow free passage of water and they are modeled by eliminating the buoyancy forces at their locations. In the hydroelastic analysis, the water is assumed to be an ideal fluid and its motion is irrotational so that a velocity potential exists. The VLFS is modeled as an isotropic plate according to the Mindlin plate theory. In order to decouple the fluid-structure interaction problem, the modal expansion method is adopted for the hydroelastic analysis which is carried out in the frequency domain. The boundary element method is used to solve the Laplace equation for the velocity potential, whereas the finite element method is employed for solving the equations of motion of the floating plate. Genetic algorithm is adopted as an optimization tool to optimize the layouts of gill cells. It is found that by appropriately positioning the flexible connector and a suitably distributing the gill cells in the VLFS, the hydroelastic response and stress resultants of the VLFS can be significantly reduced. © 2013 Elsevier Ltd.
Source Title: Engineering Structures
URI: http://scholarbank.nus.edu.sg/handle/10635/59181
ISSN: 01410296
DOI: 10.1016/j.engstruct.2013.03.002
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

8
checked on Dec 13, 2017

WEB OF SCIENCETM
Citations

5
checked on Nov 16, 2017

Page view(s)

66
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.