Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-319-01201-8_8
Title: Molecular Dynamics Simulation and Continuum Shell Model for Buckling Analysis of Carbon Nanotubes
Authors: Wang, C.M. 
Roy Chowdhury, A.N.
Koh, S.J.A.
Zhang, Y.Y.
Keywords: Buckling loads
Carbon nanotubes
Molecular dynamics simulations
Thick shell model
Issue Date: 2014
Source: Wang, C.M.,Roy Chowdhury, A.N.,Koh, S.J.A.,Zhang, Y.Y. (2014). Molecular Dynamics Simulation and Continuum Shell Model for Buckling Analysis of Carbon Nanotubes. Springer Series in Materials Science 188 : 239-273. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-319-01201-8_8
Abstract: Carbon nanotubes (CNTs) have potential applications in various fields of science and engineering due to their extremely high elasticity, strength, and thermal and electrical conductivity. Owing to their hollow and slender nature, these tubes are susceptible to buckling under a compressive axial load. As CNTs can undergo large, reversible post-buckling deformation, one may utilize this postbuckling response of CNT to manufacture mechanical energy storage devices at the nano-scale, or use it as a nano-knife or nano-pump. It is therefore important to understand the buckling behavior of CNTs under a compressive axial load. Experimental investigations on CNT buckling are very expensive and difficult to perform. As such, researchers often rely on molecular dynamics (MD) simulations, or continuum mechanics modeling to study their mechanical behaviors. In order to develop a good continuum mechanics model for buckling analysis of CNTs, one needs to possess adequate experimental or MD simulation data for its calibration. For "short" CNTs with small aspect ratios (≤10), researchers have reported different critical buckling loads/strains for the same CNTs based on MD simulations. Moreover, existing MD simulation data are not sufficiently comprehensive to allow rigorous benchmarking of continuum-based models. This chapter presents extensive sets of MD critical buckling loads/strains for armchair single-walled CNT (SWCNTs) and double-walled CNTs (DWCNTs), with various aspect ratios less than 10. These results serve to address the discrepancies found in the existing MD simulations, as well as to offer a comprehensive database for the critical buckling loads/strains for various armchair SWCNTs and DWCNTs. The Adaptive Intermolecular Reactive Bond Order (AIREBO) potential was adopted for MD simulations. Based on the MD results, the Young's modulus, Poisson's ratio and thickness for an equivalent continuum cylindrical shell model of CNTs are calibrated. The equivalent continuum shell model may be used to calculate the buckling loads of CNTs, in-lieu of MD simulations. © Springer International Publishing Switzerland 2014.
Source Title: Springer Series in Materials Science
URI: http://scholarbank.nus.edu.sg/handle/10635/59128
ISBN: 9783319012001
ISSN: 0933033X
DOI: 10.1007/978-3-319-01201-8_8
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

5
checked on Dec 12, 2017

Page view(s)

91
checked on Dec 7, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.