Please use this identifier to cite or link to this item: https://doi.org/10.1142/S1758825111000968
Title: Analytical solutions of polymeric gel structures under buckling and wrinkle
Authors: Liu, Z.S.
Swaddiwudhipong, S. 
Cui, F.S.
Hong, W.
Suo, Z.
Zhang, Y.W.
Keywords: Buckling
gel
incremental modulus
instability
swelling
thin film gel
wrinkle buckling
Issue Date: Jun-2011
Source: Liu, Z.S., Swaddiwudhipong, S., Cui, F.S., Hong, W., Suo, Z., Zhang, Y.W. (2011-06). Analytical solutions of polymeric gel structures under buckling and wrinkle. International Journal of Applied Mechanics 3 (2) : 235-257. ScholarBank@NUS Repository. https://doi.org/10.1142/S1758825111000968
Abstract: One of the unique properties of polymeric gel is that the volume and shape of gel can dramatically change even at mild variation of external stimuli. Though a variety of instability patterns of slender and thin film gel structures due to swelling have been observed in various experimental studies, many are not well understood. This paper presents the analytical solutions of swelling-induced instability of various slender and thin film gel structures. We have adopted the well developed constitutive relation of inhomogeneous field theory of a polymeric network in equilibrium with a solvent and mechanical load or constraint with the incremental modulus concept for slender beam and thin film gel structures. The formulas of buckling and wrinkle conditions and critical stress values are derived for slender beam and thin film gel structures under swelling-induced instability using nonlinear buckling theories of beam and thin film structures. For slender beam structure, we construct the stability diagram with the distinct stable and unstable zones. The critical slenderness ratio and corresponding critical stresses are provided for different dimensionless material parameters. For thin film gel structures, we consider the thin film gel on an elastic foundation with different stiffness. The analytical solutions of critical stress and corresponding wrinkle wavelength, as well as buckling condition (or critical chemical potential) are given. These analytical solutions will provide a guideline for gel structure design used in polymeric gels MEMS and NEMS structures such as sensors and actuators. More importantly, the work provides a theoretical foundation of gel structure buckling and wrinkle, instability phenomena are different from normal engineering or material buckling. © 2011 Imperial College Press.
Source Title: International Journal of Applied Mechanics
URI: http://scholarbank.nus.edu.sg/handle/10635/58951
ISSN: 17588251
DOI: 10.1142/S1758825111000968
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

52
checked on Dec 5, 2017

WEB OF SCIENCETM
Citations

50
checked on Nov 16, 2017

Page view(s)

47
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.