Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/58875
Title: Unified finite elements based on the classical and shear deformation theories of beams and axisymmetric circular plates
Authors: Reddy, J.N.
Wang, C.M. 
Lam, K.Y. 
Keywords: Axisymmetric circular plates
Classical deformation
Shear deformation
Unified finite elements
Issue Date: Jun-1997
Source: Reddy, J.N.,Wang, C.M.,Lam, K.Y. (1997-06). Unified finite elements based on the classical and shear deformation theories of beams and axisymmetric circular plates. Communications in Numerical Methods in Engineering 13 (6) : 495-510. ScholarBank@NUS Repository.
Abstract: In this paper a unified finite element model that contains the Euler-Bernoulli, Timoshenko and simplified Reddy third-order beam theories as special cases is presented. The element has only four degrees of freedom, namely deflection and rotation at each of its two nodes. Depending on the choice of the element type, the general stiffness matrix can be specialized to any of the three theories by merely assigning proper values to parameters introduced in the development. The element does not experience shear locking, and gives exact generalized nodal displacements for Euler-Bernoulli and Timoshenko beam theories when the beam is homogeneous and has constant geometric properties. While the Timoshenko beam theory requires a shear correction factor, the third-order beam theory does not require specification of a shear correction factor. An extension of the work to axisymmetric bending of circular plates is also presented. A stiffness matrix based on the exact analytical form of the solution of the first-order theory of circular plates is derived. © 1997 by John Wiley & Sons, Ltd.
Source Title: Communications in Numerical Methods in Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/58875
ISSN: 10698299
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

23
checked on Dec 8, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.