Please use this identifier to cite or link to this item:
Title: The effects of Schottky barrier profile on spin dependent tunneling in a ferromagnet-insulator-semiconductor system
Authors: Chung, N.L.
Jalil, M.B.A. 
Tan, S.G.
Issue Date: 1-Aug-2010
Citation: Chung, N.L., Jalil, M.B.A., Tan, S.G. (2010-08-01). The effects of Schottky barrier profile on spin dependent tunneling in a ferromagnet-insulator-semiconductor system. Journal of Applied Physics 108 (3) : -. ScholarBank@NUS Repository.
Abstract: The insertion of a tunnel barrier between a ferromagnetic (FM) metal source lead and a semiconductor (SC) layer has proved effective in achieving high spin injection efficiency at the FM-SC interface. We investigate the spin transport across a FM-I (insulator)-SC interface, under the influence of a Schottky barrier which arises in the SC layer close to the interface. The spin transport in the presence of an applied voltage is calculated via the nonequilibrium Green's function (NEGF) tight binding model. The NEGF formalism systematically accounts for: (i) the spatial profile of the Schottky barrier, (ii) the coupling between the FM lead and the SC layer, and (iii) the effect of the entire semi-infinite lead, which can be reduced to a self-energy term. We investigate several parameters (e.g., doping concentration, built-in potential and applied bias) which affect the Schottky barrier profile, and hence the spin current across the FM/I/SC system. It is shown that the spin polarization of current can be significantly improved by having a low Schottky barrier height, but a high built-in potential. A high doping density increases the current density by decreasing the Schottky barrier height and the depletion width, but at the cost of reduced spin polarization. © 2010 American Institute of Physics.
Source Title: Journal of Applied Physics
ISSN: 00218979
DOI: 10.1063/1.3466772
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Feb 18, 2019


checked on Feb 18, 2019

Page view(s)

checked on Nov 17, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.