Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.3115423
Title: Shape effects in graphene nanoribbon resonant tunneling diodes: A computational study
Authors: Teong, H.
Lam, K.-T.
Khalid, S.B.
Liang, G. 
Issue Date: 2009
Citation: Teong, H., Lam, K.-T., Khalid, S.B., Liang, G. (2009). Shape effects in graphene nanoribbon resonant tunneling diodes: A computational study. Journal of Applied Physics 105 (8) : -. ScholarBank@NUS Repository. https://doi.org/10.1063/1.3115423
Abstract: The possibility of using graphene nanoribbons (GNRs) as the material for resonant tunneling diodes (RTDs) was investigated using a device simulator based on the nonequilibrium Green's function with the π -orbital tight-binding approach. The double-barrier quantum well (DBQW) requirements of a RTD can be implemented by adjusting the width of a GNR to derive a negative differential resistance (NDR). The implementation of such a device is demonstrated in this paper and its mechanism was also found to be robust regardless of the eventual shape of the GNR patterned. Furthermore, the effects of the shape of the patterned GNR and the operating temperature on the performance of the device were explored by looking at the real space current flux of the device and the temperature dependency of the peak-valley ratio (PVR), respectively. Although the different shapes of GNR RTDs had a similar DBQW structure, their PVRs were different due to their conduction mechanisms which were dependent on the different geometrical shapes of each case. Lastly, the effect of thermal broadening, and width/length dependence of the central GNR between two barriers on the device performance, was further investigated in order to provide insights into the device physics of GNR RTDs for future study on performance optimization. © 2009 American Institute of Physics.
Source Title: Journal of Applied Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/57387
ISSN: 00218979
DOI: 10.1063/1.3115423
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

32
checked on Oct 15, 2018

WEB OF SCIENCETM
Citations

25
checked on Oct 15, 2018

Page view(s)

19
checked on Jul 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.