Please use this identifier to cite or link to this item: https://doi.org/10.1186/1475-925X-3-7
Title: Nonlinear analysis of EEG signals at different mental states
Authors: Natarajan, K.
Acharya, U.R.
Alias, F.
Tiboleng, T.
Puthusserypady, S.K. 
Issue Date: 16-Mar-2004
Source: Natarajan, K.,Acharya, U.R.,Alias, F.,Tiboleng, T.,Puthusserypady, S.K. (2004-03-16). Nonlinear analysis of EEG signals at different mental states. BioMedical Engineering Online 3 : -. ScholarBank@NUS Repository. https://doi.org/10.1186/1475-925X-3-7
Abstract: Background: The EEG (Electroencephalogram) is a representative signal containing information about the condition of the brain. The shape of the wave may contain useful information about the state of the brain. However, the human observer can not directly monitor these subtle details. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. This work discusses the effect on the EEG signal due to music and reflexological stimulation. Methods: In this work, nonlinear parameters like Correlation Dimension (CD), Largest Lyapunov Exponent (LLE), Hurst Exponent (H) and Approximate Entropy (ApEn) are evaluated from the EEG signals under different mental states. Results: The results obtained show that EEG to become less complex relative to the normal state with a confidence level of more than 85% due to stimulation. Conclusions: It is found that the measures are significantly lower when the subjects are under sound or reflexologic stimulation as compared to the normal state. The dimension increases with the degree of the cognitive activity. This suggests that when the subjects are under sound or reflexologic stimuli, the number of parallel functional processes active in the brain is less and the brain goes to a more relaxed state. © 2004 Natarajan et al; licensee BioMed Central Ltd.
Source Title: BioMedical Engineering Online
URI: http://scholarbank.nus.edu.sg/handle/10635/56815
ISSN: 1475925X
DOI: 10.1186/1475-925X-3-7
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

117
checked on Dec 5, 2017

Page view(s)

32
checked on Dec 8, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.