Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00170-013-4756-9
Title: Learning iterative dispatching rules for job shop scheduling with genetic programming
Authors: Nguyen, S.
Zhang, M.
Johnston, M.
Tan, K.C. 
Keywords: Dispatching rule
Genetic programming
Job shop
Local search
Issue Date: Jul-2013
Source: Nguyen, S., Zhang, M., Johnston, M., Tan, K.C. (2013-07). Learning iterative dispatching rules for job shop scheduling with genetic programming. International Journal of Advanced Manufacturing Technology 67 (1-4) : 85-100. ScholarBank@NUS Repository. https://doi.org/10.1007/s00170-013-4756-9
Abstract: This study proposes a new type of dispatching rule for job shop scheduling problems. The novelty of these dispatching rules is that they can iteratively improve the schedules by utilising the information from completed schedules. While the quality of the schedule can be improved, the proposed iterative dispatching rules (IDRs) still maintain the easiness of implementation and low computational effort of the traditional dispatching rules. This feature makes them more attractive for large-scale manufacturing systems. A genetic programming (GP) method is developed in this paper to evolve IDRs for job shop scheduling problems. The results show that the proposed GP method is significantly better than the simple GP method for evolving composite dispatching rules. The evolved IDRs also show their superiority to the benchmark dispatching rules when tested on different problem instances with makespan and total weighted tardiness as the objectives. Different aspects of IDRs are also investigated and the insights from these analyses are used to enhance the performance of IDRs. © 2013 Springer-Verlag London.
Source Title: International Journal of Advanced Manufacturing Technology
URI: http://scholarbank.nus.edu.sg/handle/10635/56477
ISSN: 02683768
DOI: 10.1007/s00170-013-4756-9
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

16
checked on Dec 11, 2017

WEB OF SCIENCETM
Citations

12
checked on Dec 11, 2017

Page view(s)

32
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.