Please use this identifier to cite or link to this item: https://doi.org/2/026012
Title: fNIRS-based online deception decoding
Authors: Hu, X.-S.
Hong, K.-S.
Ge, S.S. 
Issue Date: Apr-2012
Source: Hu, X.-S.,Hong, K.-S.,Ge, S.S. (2012-04). fNIRS-based online deception decoding. Journal of Neural Engineering 9 (2) : -. ScholarBank@NUS Repository. https://doi.org/2/026012
Abstract: Deception involves complex neural processes in the brain. Different techniques have been used to study and understand brain mechanisms during deception. Moreover, efforts have been made to develop schemes that can detect and differentiate deception and truth-telling. In this paper, a functional near-infrared spectroscopy (fNIRS)-based online brain deception decoding framework is developed. Deploying dual-wavelength fNIRS, we interrogate 16 locations in the forehead when eight able-bodied adults perform deception and truth-telling scenarios separately. By combining preprocessed oxy-hemoglobin and deoxy-hemoglobin signals, we develop subject-specific classifiers using the support vector machine. Deception and truth-telling states are classified correctly in seven out of eight subjects. A control experiment is also conducted to verify the deception-related hemodynamic response. The average classification accuracy is over 83.44% from these seven subjects. The obtained result suggests that the applicability of fNIRS as a brain imaging technique for online deception detection is very promising. © 2012 IOP Publishing Ltd.
Source Title: Journal of Neural Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/56075
ISSN: 17412560
DOI: 2/026012
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

45
checked on Dec 8, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.