Please use this identifier to cite or link to this item:
Title: Exploiting molecular dynamics for multi-objective optimization
Authors: Chiam, S.C.
Tan, K.C. 
Al Mamun, A. 
Keywords: Molecular dynamics
Multi-objective optimization
Issue Date: Aug-2010
Source: Chiam, S.C., Tan, K.C., Al Mamun, A. (2010-08). Exploiting molecular dynamics for multi-objective optimization. Expert Systems with Applications 37 (8) : 5981-5992. ScholarBank@NUS Repository.
Abstract: Gas molecules within an enclosure will always tend to a homogenous and uniform equilibrium with maximum entropy, even without any prior knowledge on the geometry and state of the enclosure. Furthermore, if an uneven potential field was present, more molecules will tend to reside in the lower potential region as dictated by the Maxwell-Boltzmann distribution. The inherent diverse behavior of molecular system and their converging drift pressure in potential fields seems to be applicable for the contrary goals of proximity and diversity in multi-objective optimization. Inspired by this association, this paper will explore the notion of exploiting molecular motion to solve multi-objective problems. By adapting the algorithmic structure of molecular dynamics, which essentially represents a technique for the computer simulation of molecular motion, a molecular system that is relevant for multi-objective optimization is proposed, known as molecular dynamics optimizer (MDO). The performance of MDO was compared with other conventional multi-objective optimizers, specifically EA and PSO, in several multi-objective benchmark problems and the experimental results demonstrated that MDO is indeed a viable and practical approach for multi-objective optimization. © 2010 Elsevier Ltd. All rights reserved.
Source Title: Expert Systems with Applications
ISSN: 09574174
DOI: 10.1016/j.eswa.2010.02.007
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Mar 8, 2018


checked on Feb 7, 2018

Page view(s)

checked on Mar 12, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.