Please use this identifier to cite or link to this item: https://doi.org/10.1080/07370024.2012.697006
Title: Enhancing musical experience for the hearing-impaired using visual and haptic displays
Authors: Nanayakkara, S.C.
Wyse, L.
Ong, S.H. 
Taylor, E.A.
Issue Date: 1-Mar-2013
Source: Nanayakkara, S.C., Wyse, L., Ong, S.H., Taylor, E.A. (2013-03-01). Enhancing musical experience for the hearing-impaired using visual and haptic displays. Human-Computer Interaction 28 (2) : 115-160. ScholarBank@NUS Repository. https://doi.org/10.1080/07370024.2012.697006
Abstract: This article addresses the broad question of understanding whether and how a combination of tactile and visual information could be used to enhance the experience of music by the hearing impaired. Initially, a background survey was conducted with hearing-impaired people to find out the techniques they used to "listen" to music and how their listening experience might be enhanced. Information obtained from this survey and feedback received from two profoundly deaf musicians were used to guide the initial concept of exploring haptic and visual channels to augment a musical experience. The proposed solution consisted of a vibrating "Haptic Chair" and a computer display of informative visual effects. The Haptic Chair provided sensory input of vibrations via touch by amplifying vibrations produced by music. The visual display transcoded sequences of information about a piece of music into various visual sequences in real time. These visual sequences initially consisted of abstract animations corresponding to specific features of music such as beat, note onset, tonal context, and so forth. In addition, because most people with impaired hearing place emphasis on lip reading and body gestures to help understand speech and other social interactions, their experiences were explored when they were exposed to human gestures corresponding to musical input. Rigorous user studies with hearing-impaired participants suggested that musical representation for the hearing impaired should focus on staying as close to the original as possible and is best accompanied by conveying the physics of the representation via an alternate channel of perception. All the hearing-impaired users preferred either the Haptic Chair alone or the Haptic Chair accompanied by a visual display. These results were further strengthened by the fact that user satisfaction was maintained even after continuous use of the system over a period of 3 weeks. One of the comments received from a profoundly deaf user when the Haptic Chair was no longer available ("I am going to be deaf again"), poignantly expressed the level of impact it had made. The system described in this article has the potential to be a valuable aid in speech therapy, and a user study is being carried out to explore the effectiveness of the Haptic Chair for this purpose. It is also expected that the concepts presented in this paper would be useful in converting other types of environmental sounds into a visual display and/or a tactile input device that might, for example, enable a deaf person to hear a doorbell ring, footsteps approaching from behind, or a person calling him or her, or to make understanding conversations or watching television less stressful. Moreover, the prototype system could be used as an aid in learning to play a musical instrument or to sing in tune. This research work has shown considerable potential in using existing technology to significantly change the way the deaf community experiences music. We believe the findings presented here will add to the knowledge base of researchers in the field of human-computer interaction interested in developing systems for the hearing impaired. © 2013 Copyright Taylor and Francis Group, LLC.
Source Title: Human-Computer Interaction
URI: http://scholarbank.nus.edu.sg/handle/10635/55895
ISSN: 07370024
DOI: 10.1080/07370024.2012.697006
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2017

Page view(s)

48
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.