Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/55860
Title: Elman neural networks for dynamic modeling of epileptic EEG.
Authors: Kannathal, N.
Puthusserypady, S.K. 
Min, L.C.
Issue Date: 2006
Source: Kannathal, N.,Puthusserypady, S.K.,Min, L.C. (2006). Elman neural networks for dynamic modeling of epileptic EEG.. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 1 : 6145-6148. ScholarBank@NUS Repository.
Abstract: In this paper, autoregressive modeling technique and neural network based modeling techniques are used to model and simulate electroencephalogram (EEG) signals. EEG signal modeling is used as a tool to identify pathophysiological EEG changes potentially useful in clinical diagnosis. The normal, background and epileptic EEG signals are modeled and the dynamical properties of the actual and modeled signals are compared. Chaotic invariants like correlation dimension (D(2)), largest Lyapunov exponent (lambda(1), Hurst exponent (H) and Kolmogorov entropy (K) are used to characterize the dynamical properties of the actual and modeled signals. Our study showed that the dynamical properties of the EEG signal modeled using neural network (NN) techniques are very similar to that of the signal.
Source Title: Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
URI: http://scholarbank.nus.edu.sg/handle/10635/55860
ISSN: 1557170X
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

18
checked on Dec 14, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.