Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.neucom.2009.01.005
Title: Computational intelligence-based congestion prediction for a dynamic urban street network
Authors: Srinivasan, D. 
Wai Chan, C.
Balaji, P.G. 
Keywords: Evolutionary computation
Fuzzy logic
Neural networks
Traffic flow prediction
Issue Date: Jun-2009
Citation: Srinivasan, D., Wai Chan, C., Balaji, P.G. (2009-06). Computational intelligence-based congestion prediction for a dynamic urban street network. Neurocomputing 72 (10-12) : 2710-2716. ScholarBank@NUS Repository. https://doi.org/10.1016/j.neucom.2009.01.005
Abstract: This paper develops a hybrid model for single point short term traffic flow forecasting in an urban traffic network. The hybrid model consists of two main modules: a fuzzy input fuzzy output filter (FIFO-filter) and a multi-layer feed-forward artificial neural network architecture optimized using evolution strategies (MLFN-ES). The FIFO-filter performs the data clustering operation and provides a rough forecasted prediction value based on the input data to the MLFN-ES associated with each cluster for modeling the input-output relation to provide accurate short term forecast value. The performance of the proposed model is demonstrated by predicting the traffic flow for an intersection in the central business district (CBD) area of Singapore. The hybrid model proposed in this paper gave a mean absolute percentage error (MAPE) of 8.35% on weekdays and 9.73% on weekends for the test data. A comparison analysis shows improved performance of the proposed hybrid method in short term traffic prediction over popular approaches like ARIMA and artificial neural network based systems. © 2009 Elsevier B.V. All rights reserved.
Source Title: Neurocomputing
URI: http://scholarbank.nus.edu.sg/handle/10635/55381
ISSN: 09252312
DOI: 10.1016/j.neucom.2009.01.005
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

22
checked on Jul 17, 2018

WEB OF SCIENCETM
Citations

16
checked on Jun 27, 2018

Page view(s)

34
checked on May 5, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.