Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevB.71.224408
DC FieldValue
dc.titleCombined ballistic and diffusive model of spin-polarized current-induced magnetization switching in pseudo-spin-valve structure
dc.contributor.authorGuo, J.
dc.contributor.authorJalil, M.B.A.
dc.date.accessioned2014-06-17T02:41:50Z
dc.date.available2014-06-17T02:41:50Z
dc.date.issued2005-06-01
dc.identifier.citationGuo, J., Jalil, M.B.A. (2005-06-01). Combined ballistic and diffusive model of spin-polarized current-induced magnetization switching in pseudo-spin-valve structure. Physical Review B - Condensed Matter and Materials Physics 71 (22) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevB.71.224408
dc.identifier.issn10980121
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/55327
dc.description.abstractWe present a theoretical model of spin transport and spin transfer in a Co Cu Co pseudo-spin-valve (PSV) structure, which combines ballistic spin injection across the interfaces of the PSV, and diffusive spin relaxation within the free Co layer. The ballistic spin injection model considers spin-differential transmission and reflection probabilities at the two Co-Cu interfaces, and the effect of multiple reflections at the interfaces. This ballistic process causes the incident spin current at the spacer-free Co interface to undergo spin rotation and to be reduced to a fraction of the spin current in the pinned Co layer. There are two contributions to the spin transfer to the free Co layer, i.e., (a) the fraction of the incident spin current which is "absorbed" at the interface in order to conserve spin momentum at the interface (neglected in previous purely diffusive models) and (b) spin relaxation of the transverse spin accumulation, due to a combination of spin scattering and precession. The magnitudes of these two components are calculated based on typical experimental parameters, and the switching fields due to spin torques in the in-plane and out-of-plane directions are derived by considering a modified Landau-Lifshitz-Gilbert (LLG) equation. Based on known values of switching magnetic fields of Co Cu Co PSV, the calculated critical current density ranges from 2.5to 8.2×107Acm-2, in agreement with observed values in current-induced magnetization switching experiments. © 2005 The American Physical Society.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1103/PhysRevB.71.224408
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1103/PhysRevB.71.224408
dc.description.sourcetitlePhysical Review B - Condensed Matter and Materials Physics
dc.description.volume71
dc.description.issue22
dc.description.page-
dc.description.codenPRBMD
dc.identifier.isiut000230276700064
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.