Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10878-006-9017-5
Title: Clustering and combinatorial optimization in recursive supervised learning
Authors: Ramanathan, K.
Guan, S.U. 
Keywords: Evolutionary algorithms
Neural networks
Recursive learning
Task decomposition
Topology based selection
Issue Date: Feb-2007
Source: Ramanathan, K., Guan, S.U. (2007-02). Clustering and combinatorial optimization in recursive supervised learning. Journal of Combinatorial Optimization 13 (2) : 137-152. ScholarBank@NUS Repository. https://doi.org/10.1007/s10878-006-9017-5
Abstract: The use of combinations of weak learners to learn a dataset has been shown to be better than the use of a single strong learner. In fact, the idea is so successful that boosting, an algorithm combining several weak learners for supervised learning, has been considered to be the best off the shelf classifier. However, some problems still exist, including determining the optimal number of weak learners and the over fitting of data. In an earlier work, we developed the RPHP algorithm which solves both these problems by using a combination of global search, weak learning and pattern distribution. In this chapter, we revise the global search component by replacing it with a cluster based combinatorial optimization. Patterns are clustered according to the output space of the problem, i.e., natural clusters are formed based on patterns belonging to each class. A combinatorial optimization problem is therefore created, which is solved using evolutionary algorithms. The evolutionary algorithms identify the "easy" and the "difficult" clusters in the system. The removal of the easy patterns then gives way to the focused learning of the more complicated patterns. The problem therefore becomes recursively simpler. Over fitting is overcome by using a set of validation patterns along with a pattern distributor. An algorithm is also proposed to use the pattern distributor to determine the optimal number of recursions and hence the optimal number of weak learners for the problem. Empirical studies show generally good performance when compared to other state of the art methods. © Springer Science+Business Media, LLC 2007.
Source Title: Journal of Combinatorial Optimization
URI: http://scholarbank.nus.edu.sg/handle/10635/55308
ISSN: 13826905
DOI: 10.1007/s10878-006-9017-5
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

4
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

2
checked on Nov 22, 2017

Page view(s)

29
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.