Please use this identifier to cite or link to this item:
Title: Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition
Authors: Chen, X.Y.
Lu, Y.F.
Tang, L.J.
Wu, Y.H. 
Cho, B.J. 
Xu, X.J.
Dong, J.R.
Song, W.D.
Issue Date: 1-Jan-2005
Source: Chen, X.Y., Lu, Y.F., Tang, L.J., Wu, Y.H., Cho, B.J., Xu, X.J., Dong, J.R., Song, W.D. (2005-01-01). Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition. Journal of Applied Physics 97 (1) : -. ScholarBank@NUS Repository.
Abstract: We have investigated phase separation, silicon nanocrystal (Si NC) formation and optical properties of Si oxide (Si Ox, 0<x<2) films by high-vacuum annealing and dry oxidation. The Si Ox films were deposited by plasma-enhanced chemical vapor deposition at different nitrous-oxide/silane flow ratios. The physical and optical properties of the Si Ox films were studied as a result of high-vacuum annealing and thermal oxidation. X-ray photoelectron spectroscopy (XPS) reveals that the as-deposited films have a random-bonding or continuous-random-network structure with different oxidation states. After annealing at temperatures above 1000 °C, the intermediate Si continuum in XPS spectra (referring to the suboxide) split to Si peaks corresponding to SiO2 and elemental Si. This change indicates the phase separation of the Si Ox into more stable Si O2 and Si clusters. Raman, high-resolution transmission electron microscopy and optical absorption confirmed the phase separation and the formation of Si NCs in the films. The size of Si NCs increases with increasing Si concentration in the films and increasing annealing temperature. Two photoluminescence (PL) bands were observed in the films after annealing. The ultraviolet (UV)-range PL with a peak fixed at 370-380 nm is independent of Si concentration and annealing temperature, which is a characteristic of defect states. Strong PL in red range shows redshifts from ~600 to 900 nm with increasing Si concentration and annealing temperature, which supports the quantum confinement model. After oxidation of the high-temperature annealed films, the UV PL was almost quenched while the red PL shows continuous blueshifts with increasing oxidation time. The different oxidation behaviors further relate the UV PL to the defect states and the red PL to the recombination of quantum-confined excitions. © 2005 American Institute of Physics.
Source Title: Journal of Applied Physics
ISSN: 00218979
DOI: 10.1063/1.1829789
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Feb 26, 2018


checked on Feb 26, 2018

Page view(s)

checked on Feb 25, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.