Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00138-002-0086-x
Title: A golden-block-based self-refining scheme for repetitive patterned wafer inspections
Authors: Guan, S.-U. 
Xie, P.
Li, H.
Keywords: Golden block
Golden template
Image-to-image reference method
PDI
Wafer inspection
Issue Date: Mar-2003
Source: Guan, S.-U., Xie, P., Li, H. (2003-03). A golden-block-based self-refining scheme for repetitive patterned wafer inspections. Machine Vision and Applications 13 (5-6) : 314-321. ScholarBank@NUS Repository. https://doi.org/10.1007/s00138-002-0086-x
Abstract: This paper presents a novel technique for detecting possible defects in two-dimensional wafer images with repetitive patterns using prior knowledge. The technique has a learning ability that can create a golden-block database from the wafer image itself, then modify and refine its content when used in further inspections. The extracted building block is stored as a golden block for the detected pattern. When new wafer images with the same periodical pattern arrive, we do not have to recalculate their periods and building blocks. A new building block can be derived directly from the existing golden block after eliminating alignment differences. If the newly derived building block has better quality than the stored golden block, then the golden block is replaced with the new building block. With the proposed algorithm, our implementation shows that a significant amount of processing time is saved. Also, the storage overhead of golden templates is reduced significantly by storing golden blocks only.
Source Title: Machine Vision and Applications
URI: http://scholarbank.nus.edu.sg/handle/10635/54224
ISSN: 09328092
DOI: 10.1007/s00138-002-0086-x
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

14
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

12
checked on Nov 22, 2017

Page view(s)

48
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.