Please use this identifier to cite or link to this item:
Title: In Vivo Epigenomic Profiling of Germ Cells Reveals Germ Cell Molecular Signatures
Authors: Ng, J.-H.
Kumar, V.
Muratani, M.
Kraus, P.
Yeo, J.-C.
Yaw, L.-P.
Xue, K.
Lufkin, T.
Prabhakar, S.
Ng, H.-H. 
Issue Date: 11-Feb-2013
Citation: Ng, J.-H., Kumar, V., Muratani, M., Kraus, P., Yeo, J.-C., Yaw, L.-P., Xue, K., Lufkin, T., Prabhakar, S., Ng, H.-H. (2013-02-11). In Vivo Epigenomic Profiling of Germ Cells Reveals Germ Cell Molecular Signatures. Developmental Cell 24 (3) : 324-333. ScholarBank@NUS Repository.
Abstract: The limited number of in vivo germ cells poses an impediment to genome-wide studies. Here, we applied a small-scale chromatin immunoprecipitation sequencing (ChIP-seq) method on purified mouse fetal germ cells to generate genome-wide maps of four histone modifications (H3K4me3, H3K27me3, H3K27ac, and H2BK20ac). Comparison of active chromatin state between somatic, embryonic stem, and germ cells revealed promoters and enhancers needed for stem cell maintenance and germ cell development. We found the nuclear receptor Nr5a2 motif to be enriched at a subset of germ cell cis-regulatory regions, and our results implicate Nr5a2 in germ cell biology. Interestingly, in germ cells, the H3K27me3 histone modification occurs more frequently at regions that are enriched for retrotransposons and MHC genes, indicating that these loci are specifically silenced in germ cells. Together, our study provides genome-wide histone modification maps of in vivo germ cells and reveals the molecular chromatin signatures of germ cells.
Source Title: Developmental Cell
ISSN: 15345807
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on May 11, 2018


checked on May 15, 2018

Page view(s)

checked on Jun 30, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.