Please use this identifier to cite or link to this item: https://doi.org/10.1021/tx0600550
Title: Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods
Authors: Xue, Y. 
Li, H. 
Ung, C.Y. 
Yap, C.W. 
Chen, Y.Z. 
Issue Date: Aug-2006
Source: Xue, Y., Li, H., Ung, C.Y., Yap, C.W., Chen, Y.Z. (2006-08). Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Chemical Research in Toxicology 19 (8) : 1030-1039. ScholarBank@NUS Repository. https://doi.org/10.1021/tx0600550
Abstract: Toxicity of various compounds has been measured in many studies by their toxic effects against Tetrahymena pyriformis. Efforts have also been made to use computational quantitative structure-activity relationship (QSAR) and statistical learning methods (SLMs) for predicting Tetrahymena pyriformis toxicity (TPT) at impressive accuracies. Because of the diversity of compounds and toxicity mechanisms, it is desirable to explore additional methods and to examine if these methods are applicable to more diverse sets of compounds. We tested several SLMs (logistic regression, C4.5 decision tree, k-nearest neighbor, probabilistic neural network, support vector machines) for their capability in predicting TPT by using 1129 compounds (841 TPT and 288 non-TPT agents) which are more diverse than those in other studies. A feature selection method was used for improving prediction performance and selecting molecular descriptors responsible for distinguishing TPT and non-TPT agents. The prediction accuracies are 86.9%∼94.2% for TPT and 71.2%∼87.5% for non-TPT agents based on 5-fold cross-validation studies, which are comparable to some of earlier studies despite the use of more diverse sets of compounds. The selected molecular descriptors are consistent with those used in other studies and experimental findings. These suggest that SLMs are useful for predicting TPT potential of diverse sets of compounds and for characterizing the molecular descriptors associated with TPT. © 2006 American Chemical Society.
Source Title: Chemical Research in Toxicology
URI: http://scholarbank.nus.edu.sg/handle/10635/52828
ISSN: 0893228X
DOI: 10.1021/tx0600550
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

46
checked on Jan 17, 2018

WEB OF SCIENCETM
Citations

46
checked on Jan 17, 2018

Page view(s)

53
checked on Jan 13, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.