Please use this identifier to cite or link to this item: https://doi.org/10.1002/smll.201200490
Title: Microarray with micro- and nano-topographies enables identification of the optimal topography for directing the differentiation of primary murine neural progenitor cells
Authors: Moe, A.A.K. 
Suryana, M. 
Marcy, G. 
Lim, S.K. 
Ankam, S.
Goh, J.Z.W.
Jin, J.
Teo, B.K.K.
Law, J.B.K.
Low, H.Y.
Goh, E.L.K. 
Sheetz, M.P. 
Yim, E.K.F. 
Keywords: biomedical applications
nanoimprinting lithography
neuronal differentiation
tissue engineering
topography screening
Issue Date: 8-Oct-2012
Source: Moe, A.A.K., Suryana, M., Marcy, G., Lim, S.K., Ankam, S., Goh, J.Z.W., Jin, J., Teo, B.K.K., Law, J.B.K., Low, H.Y., Goh, E.L.K., Sheetz, M.P., Yim, E.K.F. (2012-10-08). Microarray with micro- and nano-topographies enables identification of the optimal topography for directing the differentiation of primary murine neural progenitor cells. Small 8 (19) : 3050-3061. ScholarBank@NUS Repository. https://doi.org/10.1002/smll.201200490
Abstract: During development and tissue repair, progenitor cells are guided by both biochemical and biophysical cues of their microenvironment, including topographical signals. The topographical cues have been shown to play an important role in controlling the fate of cells. Systematic investigation of topographical structures with different geometries and sizes under the identical experimental conditions on the same chip will enhance the understanding of the role of shape and size in cell-topography interactions. A simple customizable multi-architecture chip (MARC) array is therefore developed to incorporate, on a single chip, distinct topographies of various architectural complexities, including both isotropic and anisotropic features, in nano- to micrometer dimensions, with different aspect ratios and hierarchical structures. Polydimethylsiloxane (PDMS) replicas of MARC are used to investigate the influence of different geometries and sizes in neural differentiation of primary murine neural progenitor cells (mNPCs). Anisotropic gratings (2 μm gratings, 250 nm gratings) and isotropic 1 μm pillars significantly promote differentiation of mNPCs into neurons, as indicated by expression of β-III-tubulin (59%, 58%, and 58%, respectively, compared to 30% on the control). In contrast, glial differentiation is enhanced on isotropic 2 μm holes and 1 μm pillars. These results illustrate that anisotropic topographies enhance neuronal differentiation while isotropic topographies enhance glial differentiation on the same chip under the same conditions. MARC enables simultaneous cost-effective investigation of multiple topographies, allowing efficient optimization of topographical and biochemical cues to modulate cell differentiation. A multi-architecture chip (MARC) is designed for studying cell-topography interaction more efficiently, based on the simple arithmetic of the patterned area and typical cell area. The MARC is fabricated to incorporate a vast range of topographies with different aspect ratios and different heights to enable rapid high-throughput screening for desired biological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Source Title: Small
URI: http://scholarbank.nus.edu.sg/handle/10635/52535
ISSN: 16136810
DOI: 10.1002/smll.201200490
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

45
checked on Dec 5, 2017

WEB OF SCIENCETM
Citations

42
checked on Nov 14, 2017

Page view(s)

107
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.