Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jbiomech.2006.04.012
Title: Modeling and simulation of deformation of hydrogels responding to electric stimulus
Authors: Li, H. 
Luo, R.
Lam, K.Y. 
Keywords: Deformation
Electric stimulus
Functional engineered tissue
Mathematical modeling
Responsive hydrogel
Issue Date: 2007
Source: Li, H., Luo, R., Lam, K.Y. (2007). Modeling and simulation of deformation of hydrogels responding to electric stimulus. Journal of Biomechanics 40 (5) : 1091-1098. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jbiomech.2006.04.012
Abstract: A model for simulation of pH-sensitive hydrogels is refined in this paper to extend its application to electric-sensitive hydrogels, termed the refined multi-effect-coupling electric-stimulus (rMECe) model. By reformulation of the fixed-charge density and consideration of finite deformation, the rMECe model is able to predict the responsive deformations of the hydrogels when they are immersed in a bath solution subject to externally applied electric field. The rMECe model consists of nonlinear partial differential governing equations with chemo-electro-mechanical coupling effects and the fixed-charge density with electric-field effect. By comparison between simulation and experiment extracted from literature, the model is verified to be accurate and stable. The rMECe model performs quantitatively for deformation analysis of the electric-sensitive hydrogels. The influences of several physical parameters, including the externally applied electric voltage, initial fixed-charge density, hydrogel strip thickness, ionic strength and valence of surrounding solution, are discussed in detail on the displacement and average curvature of the hydrogels. © 2006 Elsevier Ltd. All rights reserved.
Source Title: Journal of Biomechanics
URI: http://scholarbank.nus.edu.sg/handle/10635/51461
ISSN: 00219290
DOI: 10.1016/j.jbiomech.2006.04.012
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

18
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

18
checked on Nov 22, 2017

Page view(s)

34
checked on Dec 11, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.