Please use this identifier to cite or link to this item: https://doi.org/10.1089/ten.tea.2009.0221
Title: Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan
Authors: Zhang, Y. 
Reddy, V.J. 
Wong, S.Y.
Li, X.
Su, B.
Ramakrishna, S. 
Lim, C.T. 
Issue Date: 2010
Source: Zhang, Y., Reddy, V.J., Wong, S.Y., Li, X., Su, B., Ramakrishna, S., Lim, C.T. (2010). Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Engineering - Part A 16 (6) : 1949-1960. ScholarBank@NUS Repository. https://doi.org/10.1089/ten.tea.2009.0221
Abstract: Electrospun chitosan (CTS)-based hydroxyapatite (HAp)/CTS biocomposite nanofibers for bone tissue engineering could afford a close biomimicry to the fibrous nanostructure and constituents of the hierarchically organized natural bone, but their biological performance is somewhat deficient compared with the HAp/collagen (Col) biocomposite system. This necessitates doping the electrospun HAp/CTS hybrid with the bioactive component of Col. We show herein that Col-doped HAp/CTS biocomposite (i.e., HAp/Col/CTS) containing 27.8 wt% HAp nanoparticles, 7.2 wt% Col, and 57.8 wt% CTS can be successfully electrospun into nanofibrous form through using small amount (7.2 wt%) of ultrahigh-molecular-weight poly(ethylene oxide) as the fiber-forming additive. Morphology, structure, composition, and mechanical properties of the electrospun HAp/Col/CTS scaffolds were examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy, and tensile tests, respectively. Human fetal osteoblasts on the nanofibrous HAp/Col/CTS scaffolds were cultured for up to 15 days to assess the cell-scaffold interaction and biomineralization effect. In comparison with different controls, significant increments in osteoblast proliferation, alkaline phosphatase expression, and mineral deposition were observed. Results obtained thus highlight that introduction of Col can significantly enhance the biological performance of osteoblasts on the CTS-based nanofibrous substrates and suggest that current electrospun HAp/Col/CTS biocomposite, as a highly biomimetic and bioactive nanofibrous structure, may be one of the most attractive candidates for various osteoregeneration-related applications. © 2010 Mary Ann Liebert, Inc.
Source Title: Tissue Engineering - Part A
URI: http://scholarbank.nus.edu.sg/handle/10635/51402
ISSN: 19373341
DOI: 10.1089/ten.tea.2009.0221
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

80
checked on Dec 13, 2017

WEB OF SCIENCETM
Citations

67
checked on Nov 14, 2017

Page view(s)

35
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.