Please use this identifier to cite or link to this item: https://doi.org/10.1002/elps.201000259
DC FieldValue
dc.titleDispersive transport of biomolecules in periodic energy landscapes with application to nanofilter sieving arrays
dc.contributor.authorLi, Z.R.
dc.contributor.authorLiu, G.R.
dc.contributor.authorHadjiconstantinou, N.G.
dc.contributor.authorHan, J.
dc.contributor.authorWang, J.-S.
dc.contributor.authorChen, Y.Z.
dc.date.accessioned2014-04-24T09:32:32Z
dc.date.available2014-04-24T09:32:32Z
dc.date.issued2011-02
dc.identifier.citationLi, Z.R., Liu, G.R., Hadjiconstantinou, N.G., Han, J., Wang, J.-S., Chen, Y.Z. (2011-02). Dispersive transport of biomolecules in periodic energy landscapes with application to nanofilter sieving arrays. Electrophoresis 32 (5) : 506-517. ScholarBank@NUS Repository. https://doi.org/10.1002/elps.201000259
dc.identifier.issn01730835
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/51378
dc.description.abstractWe present a theoretical model for describing the electric field-driven migration and dispersion of short anisotropic molecules in nanofluidic filter arrays. The model uses macrotransport theory to derive exact integral-form expressions for the effective mobility and diffusivity of Brownian particles moving in an effective one-dimensional energy landscape. The latter is obtained by modeling the anisotropic molecules as point-sized Brownian particles with their orientational degrees of freedom accounted for by an entropy penalty term, and using a systematic projection procedure for reducing the system dimensionality to the device axial dimension. Our analytical results provide guidance for the design and optimization of nanofluidic separation systems without the need for complex numerical simulations. Comparison with numerical solution of the macrotransport equations in the actual, effectively two-dimensional, geometry shows that the one-dimensional model faithfully describes the field- and size-dependences of mobility and diffusivity, with maximum difference on the order of 10% under the experimentally relevant electric fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1002/elps.201000259
dc.sourceScopus
dc.subjectDispersion
dc.subjectDNA separation
dc.subjectMacrotransport model
dc.subjectNanofluidics
dc.subjectOgston sieving
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.contributor.departmentPHARMACY
dc.contributor.departmentPHYSICS
dc.description.doi10.1002/elps.201000259
dc.description.sourcetitleElectrophoresis
dc.description.volume32
dc.description.issue5
dc.description.page506-517
dc.description.codenELCTD
dc.identifier.isiut000288094500004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.